Extensions 1→N→G→Q→1 with N=C22 and Q=C2×C3⋊Dic3

Direct product G=N×Q with N=C22 and Q=C2×C3⋊Dic3
dρLabelID
C23×C3⋊Dic3288C2^3xC3:Dic3288,1016

Semidirect products G=N:Q with N=C22 and Q=C2×C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C22⋊(C2×C3⋊Dic3) = C2×C6.7S4φ: C2×C3⋊Dic3/C2×C6S3 ⊆ Aut C2272C2^2:(C2xC3:Dic3)288,916
C222(C2×C3⋊Dic3) = D4×C3⋊Dic3φ: C2×C3⋊Dic3/C3⋊Dic3C2 ⊆ Aut C22144C2^2:2(C2xC3:Dic3)288,791
C223(C2×C3⋊Dic3) = C2×C625C4φ: C2×C3⋊Dic3/C62C2 ⊆ Aut C22144C2^2:3(C2xC3:Dic3)288,809

Non-split extensions G=N.Q with N=C22 and Q=C2×C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C22.1(C2×C3⋊Dic3) = D4.(C3⋊Dic3)φ: C2×C3⋊Dic3/C3⋊Dic3C2 ⊆ Aut C22144C2^2.1(C2xC3:Dic3)288,805
C22.2(C2×C3⋊Dic3) = (C6×D4).S3φ: C2×C3⋊Dic3/C62C2 ⊆ Aut C2272C2^2.2(C2xC3:Dic3)288,308
C22.3(C2×C3⋊Dic3) = C62.38D4φ: C2×C3⋊Dic3/C62C2 ⊆ Aut C2272C2^2.3(C2xC3:Dic3)288,309
C22.4(C2×C3⋊Dic3) = (C6×C12).C4φ: C2×C3⋊Dic3/C62C2 ⊆ Aut C22144C2^2.4(C2xC3:Dic3)288,311
C22.5(C2×C3⋊Dic3) = C62.247C23φ: C2×C3⋊Dic3/C62C2 ⊆ Aut C22144C2^2.5(C2xC3:Dic3)288,783
C22.6(C2×C3⋊Dic3) = C4×C324C8central extension (φ=1)288C2^2.6(C2xC3:Dic3)288,277
C22.7(C2×C3⋊Dic3) = C122.C2central extension (φ=1)288C2^2.7(C2xC3:Dic3)288,278
C22.8(C2×C3⋊Dic3) = C12.57D12central extension (φ=1)288C2^2.8(C2xC3:Dic3)288,279
C22.9(C2×C3⋊Dic3) = C627C8central extension (φ=1)144C2^2.9(C2xC3:Dic3)288,305
C22.10(C2×C3⋊Dic3) = C62.15Q8central extension (φ=1)288C2^2.10(C2xC3:Dic3)288,306
C22.11(C2×C3⋊Dic3) = C22×C324C8central extension (φ=1)288C2^2.11(C2xC3:Dic3)288,777
C22.12(C2×C3⋊Dic3) = C2×C12.58D6central extension (φ=1)144C2^2.12(C2xC3:Dic3)288,778
C22.13(C2×C3⋊Dic3) = C2×C4×C3⋊Dic3central extension (φ=1)288C2^2.13(C2xC3:Dic3)288,779
C22.14(C2×C3⋊Dic3) = C2×C12⋊Dic3central extension (φ=1)288C2^2.14(C2xC3:Dic3)288,782

׿
×
𝔽